Small field dosimetry, an example of what a Medical Physicist does (& some more examples)

A/PROF SCOTT CROWE
MEDICAL PHYSICIST
What is a Medical Physicist?

- Medical physics – application of physics concepts to medicine
 - Work in radiation oncology (ROMPs), diagnostic imaging (DIMPs), nuclear medicine, radiation safety
 - A majority of the workforce is clinical
 - Radiation oncology is the largest specialty
 - Approx. 700 across Australia, 14 in Radiation Oncology at Cancer Care Services, RBWH
 - ROMPs need a post-graduate education (MSc / PhD) and are trained clinically in a 4 year accreditation program
 - Accreditation program demands a publication
What is a Medical Physicist?

- Radiation oncology medical physicists are responsible for:
 - Quality assurance – routine checks that equipment works as expected
 - Most importantly that the dose delivered matches the dose planned
 - Radiation safety and protection
 - Innovation – service development and research
 - It involves lots of equipment
Radiation Oncology Basics

- Radiation therapy is the therapeutic use of radiation
- Radiation causes damage
 - We want to maximise the dose to the tumour / target
 - We want to minimise the dose to healthy tissue
- Commonly delivered with linear accelerators – “external beam radiation therapy”
External Beam Treatment Chain

Diagnosis and consultation
Radiation oncologist will have a prescription and treatment period in mind

Patient imaging
CT acquired with patient in treatment position, with immobilisation equipment set up

Volume delineation
Target volume and organs-at-risk contoured on CT image
Margins added for unseen expansion and delivery tolerances

Treatment planning
Arrangement of radiation beams selected to meet objectives
Iterative optimisation

Setup verification
Patient set up for treatment delivery with lasers and x-rays

Treatment delivery
Patient remains still while treatment is delivered
Beam on < 10 minutes
Treatment summary

- Machine rotates about patient and delivers radiation fields
- Field shape matches treatment volume along that axis
- “Target volume” includes
 - Tumour as seen in CT data
 - Margins for uncertainty in
 - defining the tumour from CT
 - patient setup on couch
 - movement of anatomy
What are small fields?

- Linear accelerators can produce beams up to 40 x 40 sq. cm
- Conventional treatments will cover areas of 5 x 5 to 20 x 20 sq. cm
 - Fields cover the size of the tumour with margins added
- 3 x 3 sq. cm fields (or smaller) are considered small
- 0.5 x 0.5 sq. cm is practical limit for common systems
Why small fields are useful

Treatment of smaller targets

Stereotactic radiosurgery
- Brain mets
- Meningiomas
- Trigeminal neuralgia
- Arteriovenous malformations

More conformal treatments

Stereotactic body radiotherapy
- Lung, liver, abdomen, spine, prostate, and head and neck
- The focus of a number of trials being proposed by Trans Tasman Radiation Oncology Group
- In development at RBWH
Why small fields are problematic

Treatment delivery
- Smaller margins mean that more precision is needed
- Solutions:
 - Patient immobilisation
 - Image guidance radiotherapy
 - 4D imaging / gating (next slide!)

Dosimetry
- Difficult to measure radiation output accurately
 - Time consuming
 - Special dosimeters needed
 - Complicated corrections
- Need accurate values for the sake of both the patient and to allow correlation with outcomes data
4D imaging

- Patients move during beam delivery
 - Periodic – respiration, heartbeat
- Worst case scenario
 - CT acquired while patient inhaling, and treatment planned for that
 - Beam delivered while patient exhaling
- Solution: obtain multiple CT images, at different points in the respiratory cycle
- First patient treated last week!
- Development of gating: turning beam on/off with respiratory cycle
Dose measurements?

- Planning systems use dose measurements to determine how much radiation to deliver
- Want measurements to meet national standards
 - 1 unit of dose (Gray) here to match 1 unit everywhere
- Measurements made in a water tank - dosimeter travels across beam in sub-mm steps, recording dose
- Tolerance should be <0.5%
Problems with dose measurements

- If you aren’t careful the same small field measurement done twice can differ by 20%
- Measurement devices have various issues:
 - Need corrections
 - Too large
 - Noisy signal
 - Expensive
 - Involve dangerous chemicals
Overcoming problems

- We’ve collaborated with other centres (in Brisbane, Sydney, Saskatoon!)
- Co-authored publications in the field
- Including a recent how-to paper in the national college journal
- Measurements take a lot of time to do carefully (a full day on a machine)
- An error in small field planning system dose data means an error for every patient receiving a small field
Water tank measurements

- MSc student Pat Stevenson helped with 8 hour long measurements (on a weekend!)
- Results will be evaluated against literature and independent mathematical simulation
- These measurements will be used to the commission a dose calculation system in the planning system – service development!
Dose in the planning system

- Verifications
 - examine dose calculations for simple fields in water
 - examine dose calculations in patients
 - verify existing QA procedures, or develop new ones
 - volunteer for dose audits

This will help enable planning studies, participation in trials and improved patient outcomes.
Air gap diode caps

- Those measurements used diode dosimeters
- Which overestimate dose in small fields – need correction
- Small pockets of air (e.g. 1 mm) can result in lower dose
 - Bad news for measurements, where you need to avoid bubbles or cavities
 - Good news – phenomenon can be exploited to cancel out over response
- MSc student Ben Perrett 3D printing caps with air cavities
Problem: we tell the accelerator to deliver a 1 x 1 sq. cm field,
 - Field edge may be 1.2 or 0.8 cm
 - Significant variation
Solution: have dozens of systems deliver this field size, and see what they get
Collaboration with Princess Alexandra Hospital, Genesis Cancer Care Queensland
460 pieces of radiosensitive film will be irradiated
Other physics research

- **Collaboration with QUT**
 - 2 of our physicists have appointments at QUT
 - Involved in the supervision of 6-12 month MSc research projects
 - Involved in the supervision of PhD candidates
 - Physicists planning on starting part-time PhDs

- **Collaboration with other centres**
 - Our college (ACPSEM) has a very active state branch
 - Monthly research chats
 - Quarterly research updates (presentations and round-table discussion)
 - Yearly symposium with invited speakers
Local projects

- **Gel dosimetry**
 - Provides 3D dosimetry data – excellent for verifying patient treatment plan dose
 - RBWH is one of few clinical centres in Australia investigating it
 - Commissioning the system
 - Projects underway include investigation of dose in treatments of spinal mets
 - We also have strong ties with QUT physicists and chemists
Local projects

- **Use of moulding materials in vaginal brachytherapy**
 - **Fricotan** – an ear moulding material source from audiologists
 - Repurposed for radiation delivery
 - Example of service development (solving a local problem) becoming published research
 - Now doing radiological modelling using data obtained from mass spectrometry at QUT
QUT collaborations

- Andre Asena, PhD candidate
 Investigating dose distributions near high-density materials (temporary tissue expanders in breast patients).

- Johnny Morales, PhD candidate
 Modelling of stereotactic radiosurgery system at RPAH, Sydney.

- Shadi Khoei, Post doc
 Development of education material

- Orrice Dancewicz, PhD candidate
 Novel 3D dosimetry technique for TomoTherapy using optical fibre and radiosensitive gel.

- Shaun Smith, PhD candidate
 Development of a safe-to-mix and safe-to-handle gel dosimeter.

- and more!
State collaborations

- **3D printing of dosimeter holders**
- Used with check sources - radioactive sources with a known output, so that dosimeter response can be checked
- Collaboration with Princess Alexandra Hospital radiation oncology
State collaborations

- **3D printing of patient phantoms**
- Collaborating with Radiation Oncology Mater Centre and Genesis Cancer Care Queensland
- Pictured: lungs containing tumours
- Printed components have varying density, approximately designed to match patient tissue
State collaborations

- Monte Carlo dose simulations
 - Collaborating with Princess Alexandra Hospital, Radiation Oncology Mater Centre, Genesis Cancer Care Queensland
 - Setting up clinical implementation of patient dose simulation

- Evaluation of pre-treatment quality assurance measurement processes
 - Treatment beams
 - Collaborating with Princess Alexandra Hospital, Genesis Cancer Care Queensland
 - Currently have analysed data from 1,265 QA measurements
 - Near completion
Conclusion

- **Strong research profile**
 - 13 publications involving current CCS ROMPs so far in 2015
 - plus 7 more submitted
 - plus more being drafted
 - PI on ARC Discovery grant application

- **What works for us**
 - Supervision of student research
 - Access to equipment after hours
 - Involvement in multi-centre studies
 - Regular research meetings, both locally, and with neighbouring centres